adapt.feature_based.CORAL
- class adapt.feature_based.CORAL(estimator=None, Xt=None, lambda_=1e-05, copy=True, verbose=1, random_state=None, **params)[source]
CORAL: CORrelation ALignment
CORAL is a feature based domain adaptation method which minimizes domain shift by aligning the second-order statistics of source and target distributions.
The method transforms source features in order to minimize the Frobenius norm between the correlation matrix of the input target data and the one of the transformed input source data.
The source features transformation is described by the following optimization problem:
\[\min_{A}{||A^T C_S A - C_T||_F^2}\]Where:
\(A\) is the feature transformation matrix such that \(X_S^{enc} = X_S A\)
\(C_S\) is the correlation matrix of input source data
\(C_T\) is the correlation matrix of input target data
The solution of this OP can be written with an explicit formula and the features transformation can be computed through this four steps algorithm:
\(C_S = Cov(X_S) + \lambda I_p\)
\(C_T = Cov(X_T) + \lambda I_p\)
\(X_S = X_S C_S^{-\frac{1}{2}}\)
\(X_S^{enc} = X_S C_T^{\frac{1}{2}}\)
Where \(\lambda\) is a regularization parameter.
Notice that CORAL only uses labeled source and unlabeled target data. It belongs then to “unsupervised” domain adaptation methods.
- Parameters
- estimatorsklearn estimator or tensorflow Model (default=None)
Estimator used to learn the task. If estimator is
None
, aLinearRegression
instance is used as estimator.- Xtnumpy array (default=None)
Target input data.
- lambda_float (default=1e-5)
Regularization parameter. The larger
lambda
is, the less adaptation is performed.- copyboolean (default=True)
Whether to make a copy of
estimator
or not.- verboseint (default=1)
Verbosity level.
- random_stateint (default=None)
Seed of random generator.
- paramskey, value arguments
Arguments given at the different level of the adapt object. It can be, for instance, compile or fit parameters of the estimator or kernel parameters etc… Accepted parameters can be found by calling the method
_get_legal_params(params)
.
References
- 1
[1] Sun B., Feng J., Saenko K. “Return of frustratingly easy domain adaptation”. In AAAI, 2016.
Examples
>>> from sklearn.linear_model import RidgeClassifier >>> from adapt.utils import make_classification_da >>> from adapt.feature_based import CORAL >>> Xs, ys, Xt, yt = make_classification_da() >>> model = CORAL(RidgeClassifier(), Xt=Xt, random_state=0) >>> model.fit(Xs, ys) Fit transform... Previous covariance difference: 0.013181 New covariance difference: 0.000004 Fit Estimator... >>> model.score(Xt, yt) 0.86
- Attributes
- estimator_object
Estimator.
- Cs_numpy array
Correlation matrix of source features.
- Ct_numpy array
Correlation matrix of target features.
Methods
__init__
([estimator, Xt, lambda_, copy, ...])fit
(X, y[, Xt, yt, domains])Fit Adapt Model.
fit_estimator
(X, y[, sample_weight, ...])Fit estimator on X, y.
fit_transform
(Xs, Xt, **kwargs)Fit embeddings.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X[, domain])Return estimator predictions after adaptation.
predict_estimator
(X, **predict_params)Return estimator predictions for X.
score
(X, y[, sample_weight, domain])Return the estimator score.
set_fit_request
(*[, domains])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_predict_request
(*[, domain])Request metadata passed to the
predict
method.set_score_request
(*[, domain, sample_weight])Request metadata passed to the
score
method.set_transform_request
(*[, domain])Request metadata passed to the
transform
method.transform
(X[, domain])Return aligned features for X.
unsupervised_score
(Xs, Xt)Return unsupervised score.
- __init__(estimator=None, Xt=None, lambda_=1e-05, copy=True, verbose=1, random_state=None, **params)[source]
- fit(X, y, Xt=None, yt=None, domains=None, **fit_params)[source]
Fit Adapt Model.
For feature-based models, the transformation of the input features
Xs
andXt
is first fitted. In a second stage, theestimator_
is fitted on the transformed features.For instance-based models, source importance weights are first learned based on
Xs, ys
andXt
. In a second stage, theestimator_
is fitted onXs, ys
with the learned importance weights.- Parameters
- Xnumpy array
Source input data.
- ynumpy array
Source output data.
- Xtarray (default=None)
Target input data. If None, the Xt argument given in init is used.
- ytarray (default=None)
Target input data. Only needed for supervised and semi-supervised Adapt model. If None, the yt argument given in init is used.
- domainsarray (default=None)
Vector giving the domain for each source data. Can be used for multisource purpose.
- fit_paramskey, value arguments
Arguments given to the fit method of the estimator.
- Returns
- selfreturns an instance of self
- fit_estimator(X, y, sample_weight=None, random_state=None, warm_start=True, **fit_params)[source]
Fit estimator on X, y.
- Parameters
- Xarray
Input data.
- yarray
Output data.
- sample_weightarray
Importance weighting.
- random_stateint (default=None)
Seed of the random generator
- warm_startbool (default=True)
If True, continue to fit
estimator_
, else, a new estimator is fitted based on a copy ofestimator
. (Be sure to setcopy=True
to usewarm_start=False
)- fit_paramskey, value arguments
Arguments given to the fit method of the estimator and to the compile method for tensorflow estimator.
- Returns
- estimator_fitted estimator
- fit_transform(Xs, Xt, **kwargs)[source]
Fit embeddings.
- Parameters
- Xsarray
Input source data.
- Xtarray
Input target data.
- kwargskey, value argument
Not used, present here for adapt consistency.
- Returns
- Xs_embembedded source data
- get_metadata_routing()[source]
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)[source]
Get parameters for this estimator.
- Parameters
- deepbool, default=True
Not used, here for scikit-learn compatibility.
- Returns
- paramsdict
Parameter names mapped to their values.
- predict(X, domain=None, **predict_params)[source]
Return estimator predictions after adaptation.
For feature-based method (object which implements a
transform
method), the input featureX
are first transformed. Then thepredict
method of the fitted estimatorestimator_
is applied on the transformedX
.- Parameters
- Xarray
input data
- domainstr (default=None)
For antisymetric feature-based method, different transformation of the input X are applied for different domains. The domain should then be specified between “src” and “tgt”. If
None
the default transformation is the target one.
- Returns
- y_predarray
prediction of the Adapt Model.
- predict_estimator(X, **predict_params)[source]
Return estimator predictions for X.
- Parameters
- Xarray
input data
- Returns
- y_predarray
prediction of estimator.
- score(X, y, sample_weight=None, domain=None)[source]
Return the estimator score.
If the object has a
transform
method, the estimator is applied on the transformed features X. For antisymetric transformation, a parameter domain can be set to specified between source and target transformation.Call score on sklearn estimator and evaluate on tensorflow Model.
- Parameters
- Xarray
input data
- yarray
output data
- sample_weightarray (default=None)
Sample weights
- domainstr (default=None)
This parameter specifies for antisymetric feature-based method which transformation will be applied between “source” and “target”. If
None
the transformation by default is the target one.
- Returns
- scorefloat
estimator score.
- set_fit_request(*, domains: Union[bool, None, str] = '$UNCHANGED$') adapt.feature_based._coral.CORAL [source]
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domains
parameter infit
.
- Returns
- selfobject
The updated object.
- set_params(**params)[source]
Set the parameters of this estimator.
- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
- set_predict_request(*, domain: Union[bool, None, str] = '$UNCHANGED$') adapt.feature_based._coral.CORAL [source]
Request metadata passed to the
predict
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topredict
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topredict
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domain
parameter inpredict
.
- Returns
- selfobject
The updated object.
- set_score_request(*, domain: Union[bool, None, str] = '$UNCHANGED$', sample_weight: Union[bool, None, str] = '$UNCHANGED$') adapt.feature_based._coral.CORAL [source]
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domain
parameter inscore
.- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns
- selfobject
The updated object.
- set_transform_request(*, domain: Union[bool, None, str] = '$UNCHANGED$') adapt.feature_based._coral.CORAL [source]
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
domain
parameter intransform
.
- Returns
- selfobject
The updated object.