adapt.instance_based.KLIEP

class adapt.instance_based.KLIEP(estimator=None, Xt=None, kernel='rbf', sigmas=None, max_centers=100, cv=5, algo='FW', lr=[0.001, 0.01, 0.1, 1.0, 10.0], tol=1e-06, max_iter=2000, copy=True, verbose=1, random_state=None, **params)[source]

KLIEP: Kullback–Leibler Importance Estimation Procedure

KLIEP is an instance-based method for domain adaptation.

The purpose of the algorithm is to correct the difference between input distributions of source and target domains. This is done by finding a source instances reweighting which minimizes the Kullback-Leibler divergence between source and target distributions.

The source instance weights are given by the following formula:

\[w(x) = \sum_{x_i \in X_T} \alpha_i K(x, x_i)\]

Where:

  • \(x, x_i\) are input instances.

  • \(X_T\) is the target input data.

  • \(\alpha_i\) are the basis functions coefficients.

  • \(K(x, x_i) = \text{exp}(-\gamma ||x - x_i||^2)\) for instance if kernel="rbf".

KLIEP algorithm consists in finding the optimal \(\alpha_i\) according to the following optimization problem:

\[\max_{\alpha_i } \sum_{x_j \in X_T} \log( \sum_{x_i \in X_T} \alpha_i K(x_j, x_i))\]

Subject to:

\[\sum_{x_j \in X_S} \sum_{x_i \in X_T} \alpha_i K(x_j, x_i)) = n_S\]

Where:

  • \(X_S\) is the source input data of size \(n_S\).

The above OP is solved through gradient ascent algorithm.

Furthemore a LCV procedure can be added to select the appropriate parameters of the kernel function \(K\) (typically, the paramter \(\gamma\) of the Gaussian kernel). The parameter is then selected using cross-validation on the \(J\) score defined as follows: \(J = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \text{log}(w(x))\)

Finally, an estimator is fitted using the reweighted labeled source instances.

KLIEP method has been originally introduced for unsupervised DA but it could be widen to supervised by simply adding labeled target data to the training set.

Parameters
estimatorsklearn estimator or tensorflow Model (default=None)

Estimator used to learn the task. If estimator is None, a LinearRegression instance is used as estimator.

Xtnumpy array (default=None)

Target input data.

kernelstr (default=”rbf”)

Kernel metric. Possible values: [‘additive_chi2’, ‘chi2’, ‘linear’, ‘poly’, ‘polynomial’, ‘rbf’, ‘laplacian’, ‘sigmoid’, ‘cosine’]

sigmasfloat or list of float (default=None)

Deprecated, please use the gamma parameter instead. (See below).

cvint (default=5)

Cross-validation split parameter. Used only if sigmas has more than one value.

max_centersint (default=100)

Maximal number of target instances use to compute kernels.

algostr (default=”FW”)

Optimization algorithm. Possible values: [‘original’, ‘PG’, ‘FW’]

  • ‘original’ follows the algorithm of [1]. Useful to reproduce the paper’s experiences.

  • ‘PG’ is a improved version of ‘original’. A convex projection into the constraints set is used.

  • ‘FW’ [2] uses the Frank-Wolfe algorithm to solve the above OP.

In general, ‘FW’ is more efficient than ‘original’ or ‘PG’. In some cases, ‘PG’ converges faster than ‘FW’ with a good choice of learning rate.

lrfloat or list of float (default=np.logspace(-3,1,5))

Learning rate of the gradient ascent. Used only if algo different to ‘FW’

tolfloat (default=1e-6)

Optimization threshold.

max_iterint (default=2000)

Maximal iteration of the optimization algorithm.

copyboolean (default=True)

Whether to make a copy of estimator or not.

verboseint (default=1)

Verbosity level.

random_stateint (default=None)

Seed of random generator.

paramskey, value arguments

Arguments given at the different level of the adapt object. It can be, for instance, compile or fit parameters of the estimator or kernel parameters etc… Accepted parameters can be found by calling the method _get_legal_params(params).

Yields
gammafloat or list of float

Kernel parameter gamma.

  • For kernel = chi2:

    k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)])
    
  • For kernel = poly or polynomial:

    K(X, Y) = (gamma <X, Y> + coef0)^degree
    
  • For kernel = rbf:

    K(x, y) = exp(-gamma ||x-y||^2)
    
  • For kernel = laplacian:

    K(x, y) = exp(-gamma ||x-y||_1)
    
  • For kernel = sigmoid:

    K(X, Y) = tanh(gamma <X, Y> + coef0)
    

If a list is given, the LCV process is performed to select the best parameter gamma.

coef0floaf or list of float

Kernel parameter coef0. Used for ploynomial and sigmoid kernels. See gamma parameter above for the kernel formulas. If a list is given, the LCV process is performed to select the best parameter coef0.

degreeint or list of int

Degree parameter for the polynomial kernel. (see formula in the gamma parameter description). If a list is given, the LCV process is performed to select the best parameter degree.

See also

KMM

References

1

[1] M. Sugiyama, S. Nakajima, H. Kashima, P. von Bünau and M. Kawanabe. “Direct importance estimation with model selection and its application to covariateshift adaptation”. In NIPS 2007

2

[2] J. Wen, R. Greiner and D. Schuurmans. “Correcting Covariate Shift with the Frank-Wolfe Algorithm”. In IJCAI 2015

Examples

>>> from sklearn.linear_model import RidgeClassifier
>>> from adapt.utils import make_classification_da
>>> from adapt.instance_based import KLIEP
>>> Xs, ys, Xt, yt = make_classification_da()
>>> model = KLIEP(RidgeClassifier(), Xt=Xt, kernel="rbf", gamma=[0.1, 1.], random_state=0)
>>> model.fit(Xs, ys)
Fit weights...
Cross Validation process...
Parameter {'gamma': 0.1} -- J-score = 0.013 (0.003)
Parameter {'gamma': 1.0} -- J-score = 0.120 (0.026)
Fit Estimator...
>>> model.score(Xt, yt)
0.85
Attributes
weights_numpy array

Training instance weights.

best_params_float

Best kernel params combination deduced from the LCV procedure.

alphas_numpy array

Basis functions coefficients.

centers_numpy array

Center points for kernels.

j_scores_dict

dict of J scores with the kernel params combination as keys and the J scores as values.

estimator_object

Fitted estimator.

Methods

__init__([estimator, Xt, kernel, sigmas, ...])

fit(X, y[, Xt, yt, domains])

Fit Adapt Model.

fit_estimator(X, y[, sample_weight, ...])

Fit estimator on X, y.

fit_weights(Xs, Xt, **kwargs)

Fit importance weighting.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

predict(X[, domain])

Return estimator predictions after adaptation.

predict_estimator(X, **predict_params)

Return estimator predictions for X.

predict_weights([X])

Return fitted source weights

score(X, y[, sample_weight, domain])

Return the estimator score.

set_fit_request(*[, domains])

Request metadata passed to the fit method.

set_params(**params)

Set the parameters of this estimator.

set_predict_request(*[, domain])

Request metadata passed to the predict method.

set_score_request(*[, domain, sample_weight])

Request metadata passed to the score method.

unsupervised_score(Xs, Xt)

Return unsupervised score.

__init__(estimator=None, Xt=None, kernel='rbf', sigmas=None, max_centers=100, cv=5, algo='FW', lr=[0.001, 0.01, 0.1, 1.0, 10.0], tol=1e-06, max_iter=2000, copy=True, verbose=1, random_state=None, **params)[source]
fit(X, y, Xt=None, yt=None, domains=None, **fit_params)[source]

Fit Adapt Model.

For feature-based models, the transformation of the input features Xs and Xt is first fitted. In a second stage, the estimator_ is fitted on the transformed features.

For instance-based models, source importance weights are first learned based on Xs, ys and Xt. In a second stage, the estimator_ is fitted on Xs, ys with the learned importance weights.

Parameters
Xnumpy array

Source input data.

ynumpy array

Source output data.

Xtarray (default=None)

Target input data. If None, the Xt argument given in init is used.

ytarray (default=None)

Target input data. Only needed for supervised and semi-supervised Adapt model. If None, the yt argument given in init is used.

domainsarray (default=None)

Vector giving the domain for each source data. Can be used for multisource purpose.

fit_paramskey, value arguments

Arguments given to the fit method of the estimator.

Returns
selfreturns an instance of self
fit_estimator(X, y, sample_weight=None, random_state=None, warm_start=True, **fit_params)[source]

Fit estimator on X, y.

Parameters
Xarray

Input data.

yarray

Output data.

sample_weightarray

Importance weighting.

random_stateint (default=None)

Seed of the random generator

warm_startbool (default=True)

If True, continue to fit estimator_, else, a new estimator is fitted based on a copy of estimator. (Be sure to set copy=True to use warm_start=False)

fit_paramskey, value arguments

Arguments given to the fit method of the estimator and to the compile method for tensorflow estimator.

Returns
estimator_fitted estimator
fit_weights(Xs, Xt, **kwargs)[source]

Fit importance weighting.

Parameters
Xsarray

Input source data.

Xtarray

Input target data.

kwargskey, value argument

Not used, present here for adapt consistency.

Returns
weights_sample weights
get_metadata_routing()[source]

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters
deepbool, default=True

Not used, here for scikit-learn compatibility.

Returns
paramsdict

Parameter names mapped to their values.

predict(X, domain=None, **predict_params)[source]

Return estimator predictions after adaptation.

For feature-based method (object which implements a transform method), the input feature X are first transformed. Then the predict method of the fitted estimator estimator_ is applied on the transformed X.

Parameters
Xarray

input data

domainstr (default=None)

For antisymetric feature-based method, different transformation of the input X are applied for different domains. The domain should then be specified between “src” and “tgt”. If None the default transformation is the target one.

Returns
y_predarray

prediction of the Adapt Model.

predict_estimator(X, **predict_params)[source]

Return estimator predictions for X.

Parameters
Xarray

input data

Returns
y_predarray

prediction of estimator.

predict_weights(X=None)[source]

Return fitted source weights

If None, the fitted source weights are returned. Else, sample weights are computing using the fitted alphas_ and the chosen centers_.

Parameters
Xarray (default=None)

Input data.

Returns
weights_sample weights
score(X, y, sample_weight=None, domain=None)[source]

Return the estimator score.

If the object has a transform method, the estimator is applied on the transformed features X. For antisymetric transformation, a parameter domain can be set to specified between source and target transformation.

Call score on sklearn estimator and evaluate on tensorflow Model.

Parameters
Xarray

input data

yarray

output data

sample_weightarray (default=None)

Sample weights

domainstr (default=None)

This parameter specifies for antisymetric feature-based method which transformation will be applied between “source” and “target”. If None the transformation by default is the target one.

Returns
scorefloat

estimator score.

set_fit_request(*, domains: Union[bool, None, str] = '$UNCHANGED$') adapt.instance_based._kliep.KLIEP[source]

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters
domainsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for domains parameter in fit.

Returns
selfobject

The updated object.

set_params(**params)[source]

Set the parameters of this estimator.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.

set_predict_request(*, domain: Union[bool, None, str] = '$UNCHANGED$') adapt.instance_based._kliep.KLIEP[source]

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to predict if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to predict.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters
domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for domain parameter in predict.

Returns
selfobject

The updated object.

set_score_request(*, domain: Union[bool, None, str] = '$UNCHANGED$', sample_weight: Union[bool, None, str] = '$UNCHANGED$') adapt.instance_based._kliep.KLIEP[source]

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

New in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters
domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for domain parameter in score.

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns
selfobject

The updated object.

unsupervised_score(Xs, Xt)[source]

Return unsupervised score.

The normalized discrepancy distance is computed between the reweighted/transformed source input data and the target input data.

Parameters
Xsarray

Source input data.

Xtarray

Source input data.

Returns
scorefloat

Unsupervised score.

Examples