adapt.utils.check_estimator
- adapt.utils.check_estimator(estimator=None, copy=True, name=None, display_name='estimator', task=None, force_copy=False)[source]
Check estimator.
Check that
estimator
is a sklearnBaseEstimator
or a tensorflowModel
.- Parameters
- estimatorsklearn BaseEstimator or tensorflow Model
Estimator. If
None
a LinearRegression instance or a LogisticRegression instance is returned depending on thetask
argument.- copyboolean (default=False)
Whether to return a copy of the estimator or not. If cloning fail, a warning is raised.
- display_name: str (default=”estimator”)
Name to display if an error or warning is raised
- taskstr (default=None)
Task at hand. Possible value : (
None
,"reg"
,"class"
)- force_copyboolean (default=False)
If True, an error is raised if the cloning failed.